Q	Working	Answer	Mark	Notes

	Q	Working	Answer	Mark	Notes
1	(a)		e^{6}	1	B1 cao
	(b)	$x^2 - 3x + x - 3$		2	M1 for any 3 correct terms
					or
					for 4 out of 4 correct terms ignoring signs
					or
					for $x^2 - 2x \cdots$
					or
					for $-2x-3$
		Correct answer scores full marks (unless from	$x^2 - 2x - 3$		A1
		obvious incorrect working)			
					Total 3 marks

Q	Working	Answer	Mark	Notes
2	8 + 2 - p = 6 oe eg $8 + 2 = 6 + p$ or		2	M1 (or embedded eg $8 + 2 = 10, 10 - 4 = 6$)
	$7^{8+2-p} = 7^6$ oe			
	Correct answer scores full marks (unless from obvious incorrect working)			A1 allow 7 ⁴
				Total 4 marks

Q Working Answer Mark Notes	Notes
-----------------------------	-------

3	(a)		1	1	B1
	(b)(i)	$(x \pm 4)(x \pm 9)(= 0)$		2	M1 or $(x + a)(x + b)$ where $ab = -36$ or
					a + b = -5
		Correct answer scores full marks (unless from	(x+4)(x-9)		A1 (isw if they also solve the equation in
		obvious incorrect working)			this part)
	(ii)	Answers must ft from (b)(i)	-4 and 9	1	B1 ft Answer must ft from their
					(x+p)(x+q) in (b)(i)
					Award B0 for -4 and 9 if no marks scored
					in (i)
					Total 4 marks

Q Working	Answer	Mark	Notes
-----------	--------	------	-------

4 (a)		$16p^{6}q^{8}$	2	B2 for all three correct terms (B1 for 2 correct terms in a product of 3
				terms or for $(4p^3q^4)^2$ or $(4096p^{18}q^{24})^{\frac{1}{3}}$
(b)	eg $\frac{2 \times 10}{3x \times 10} + \frac{4 \times 6}{5x \times 6} - \frac{9 \times 3}{10x \times 3} \left(= \frac{20}{30x} + \frac{24}{30x} - \frac{27}{30x}\right)$		2	M1 for a common denominator for all 3 terms with at least 2 correct equivalent fractions (no need for signs) [NB: fraction can be done in 2 parts]
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{17}{30x}$		A1 or $\frac{17}{30}x^{-1}$
(c)	eg $4x(x-5) = 4x^2 - 20x$ or $4x(2x+3) = 8x^2 + 12x$ or $(x-5)(2x+3) = 2x^2 + 3x - 10x - 15$ $= 2x^2 - 7x - 15$		3	M1 allow one error in the expansion of $4x(x-5)$ or $4x(2x+3)$ or $(x-5)(2x+3)$
	eg $(4x^2 - 20x)(2x + 3) = 8x^3 + 12x^2 - 40x^2 - 60x$ or $(8x^2 + 12x)(x - 5) = 8x^3 + 12x^2 - 40x^2 - 60x$ or $4x(2x^2 + 3x - 10x - 15) = 8x^3 + 12x^2 - 40x^2 - 60x$ or $4x(2x^2 - 7x - 15) = 8x^3 - 28x^2 - 60x$			M1ft but dep on previous M1 for correctly expanding – allow one extra error or one omission.
	Working required	$8x^3 - 28x^2 - 60x$		A1 dep on M1 May be factorised if $8x^3 - 28x^2 - 60x$ seen
				Total 7 marks

Q	Working	Answer	Mark	Notes
5 (i)	- 7 + 3 £ $2x < 5 + 3$ oe or $\frac{-7}{2}$ £ $x - \frac{3}{2} < \frac{5}{2}$ oe or - 7 + 3£ $2x$ oe and $2x < 5 + 3$ oe or $(x =) -2$ or $(x =) 4$		3	M1 or one side of the inequality correct, i.e $x \ge -2$ oe or $x < 4$ Condone = rather than \le or $<$ or any other sign for the M marks.
	$\frac{-7+3}{2} \pounds \ x < \frac{5+3}{2} \text{ or }$ $\frac{-7}{2} + \frac{3}{2} \pounds \ x < \frac{5}{2} + \frac{3}{2}$ or $\frac{-7+3}{2} \pounds \ x^{\text{oe and }} x < \frac{5+3}{2}$ or $(x =) -2 \text{ and } (x =) 4$			M1
	Correct answer scores full marks (unless from obvious incorrect working)	$0US - 2 \pounds x < 4$		A1 allow $x \ge -2$ and $x < 4$ Allow $[-2, 4]$
(ii)	$\begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet$		2	M1 ft for drawing a line from -2 to 4 or (indep) for a closed circle or [at -2 or (indep) for an open circle or) or [at 4 Only allow a follow through for a double ended inequality in (i)
		Correct diagram		A1 ft for correct diagram Only allow a follow through for a double ended inequality in (i)
				Total 5 marks

|--|

6	(a)		(12), 36, 64, 76, 86, 90	1	B1
	(b)			2	M1 ft from table for at least 5 points plotted correctly (± 0.5 squares) at end of interval or ft from (CF) table for all 6 points plotted consistently (± 0.5 squares) within each interval in the freq table at the correct height
			Correct cf diagram		A1 accept curve or line segments accept graph that is not joined to (25, 0)
	(c)	E.g. reading at 42 minutes and reading at 52 minutes		2	M1 for correct use of 42 and 52, ft from a cum freq graph provided method is shown – e.g. a line vertically drawn to the graph from readings of 42 and 52 on the Time axis to meet the graph and then a horizontal line to the CF axis (even if wrongly read scale) or clear marks on the graph and CF axis that correspond to the correct readings or correct values from the CF axis
		Correct answer scores full marks (unless from obvious incorrect working)	25 – 29		A1 ft Accept a single value in range 25 to 29 or ft from their cumulative frequency graph provided method is shown
					Total 5 marks

2.0

Q	Working	Answer	Mark	Notes
---	---------	--------	------	-------

7	BOC(BOD) = 180 - 48 - 90 (= 42) oe or EOC = 180 - (90 - 48) or $90 + 48 (= 138)$ oe		3	M1 for method to find angle <i>BOC</i> or <i>EOC</i> (may be shown in the correct place on the diagram)
	$\frac{180 - 42'}{2}$ oe or $138' \div 2$ oe			M1 a fully correct method to find angle <i>DFE</i>
	Correct answer scores full marks (unless from obvious incorrect working)	69		A1
				Total 3 marks

8 (a)	2x-3			2	M1 for substituting $f(x)$ into $g(x)$
	$\overline{3(2x-3)+1}$				Allow $\frac{f}{3f+1}$
	Correct answer scores obvious incorrect wor	full marks (unless from king)	$\frac{2x-3}{6x-8}$		A1 oe (do not isw incorrect cancelling)
(b)	y(3x+1) = x and 3xy + y = x	or $x(3y+1) = y$ and 3xy + x = y		3	M1 for moving the denominator to the other side of the equation and expanding correctly
	x(1-3y) = y or $x(3y-1) = -y$	or $y(1-3x) = x$ or $y(3x-1) = -x$			M1 for collecting and factorising the variable on one side in a correct equation
	Correct answer scores obvious incorrect work	s full marks (unless from king)	$\frac{x}{1-3x}$		A1 oe eg $-\frac{x}{3x-1}$ or $\frac{-x}{-1+3x}$ oe
					Total 6 marks

Q	Working	Answer	Mark	Notes

9 (a)	6y(y-1) + 5(y-1) or y(6y+5) - 1(6y+5)		2	M1 for $(6y \pm 5)(y \pm 1)$ or $(6y \pm 1)(y \pm 5)$ or (ay + 5)(by - 1) where $ab = 6$ or 5b - a = -1 or $(6y + p)(y + q)$ where $pq = -5$ or 6q + p = -1 Condone use of a different letter to y
	Correct answer scores full marks (unless from obvious incorrect working)	(6y+5)(y-1)		A1 oe
(b)	8w - fw = 2f + 3c		3	M1 for multiplying by denominator and expanding in a correct equation
	$8w - 3 = 2f + fw^{0e}$ or $- 2f - fw = 3 - 8w^{0e}$			M1 for gathering terms in f on one side and other terms the other side in a correct equation ft their equation dep on 2 terms in f and two other terms
	Correct answer scores full marks (unless from obvious incorrect working)	$f = \frac{8w-3}{2+w}$		A1 oe accept $f = \frac{3 - 8w}{-2 - w}$ oe
(c)	$4(x^2-2x)+7 \text{ or } 4\left(x^2-2x+\frac{7}{4}\right) \text{ oe}$		3	M1
	$4[(x-1)^2-1^2]+7$ or $4[(x-1)^2-1^2+\frac{7}{4}]$ or			M1 for a complete method
	Correct answer scores full marks (unless from obvious incorrect working)	$4(x-1)^2+3$		A1 allow $a = 4, b = -1$ and $c = 3$
				Total 8 marks

|--|

9 (c) ALT	$ax^2 + 2bax + b^2a + c$		3	M1 for correctly expanding $a(x+b)^2 + c$ to give $ax^2 + 2bax + b^2a + c$
	$2ba = -8$ and $b^2a + c = 7$			M1 for a complete method (equating coefficients)
	Correct answer scores full marks (unless from obvious incorrect working)	$4(x-1)^2+3$		A1 allow $a = 4, b = -1$ and $c = 3$

$\left \begin{array}{c} \left(\frac{8}{\sqrt{5}-1}\right) \times \frac{\sqrt{5}+1}{\sqrt{5}+1} \\ \text{or} \\ \frac{8\left(\sqrt{5}+1\right)}{4} \text{ or } \frac{8\sqrt{5}+8}{4} \text{ oe} \end{array} \right $		3	M1 for rationalising the denominator – award for seeing intention to multiply by $\frac{\sqrt{5}+1}{\sqrt{5}+1} \text{ or } \frac{-\sqrt{5}-1}{-\sqrt{5}-1}$
Working required	$2\sqrt{5}+2$		A1 from correct working
	$\sqrt{20} + 2$		B1ft for $k\sqrt{5} + c = \sqrt{5k^2} + c$ where $5k^2$ is a single integer Accept $a = 20$ and $b = 2$
			Total 3 marks

Q Working Answer Mark Notes

				6	
11	y = x - 3	x = y + 3		6	B1 for correct rearrangement of linear
					equation
	eg $3x^2 - (x-3)^2 + x(x-3) = 9$	eg $3(3+y)^2 - y^2 + y(3+y) = 9$			M1 substitution of their linear equation into
					quadratic in x or y alone(even if B0 scored)
	eg $3x^2 + 3x - 18 (= 0)$	eg $3y^2 + 21y + 18 (= 0)$			M1ft from their substitution (dep on
	or	or			previous M1) for a complete correct method
	$x^{2} + x - 6 (= 0)$	$v^2 + 7v + 6 (= 0)$			to get a 3-term or 2-term quadratic
					expression in the form
					$ax^2 + bx (+ c) (= 0)$ [allow $ax^2 + bx = c$]
		(1+1)(1+2)(1+2)			
	eg (x-2)(x+3) (= 0)	eg (y + 1)(y + 6) (= 0)			M1 (dep on M1) for a complete method to
					solve their 3-term or 2- term quadratic
	$-1+\sqrt{1^2-4\times1\times-6}$	$-7 + \sqrt{7^2 - 4 \times 1 \times 6}$			equation $(ax^2 + bx (+ c) = 0)$ – correct
	$x = \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times -6}}{2 \times 1}$	$y = \frac{-7 \pm \sqrt{7^2 - 4 \times 1 \times 6}}{2 \times 1}$			factorisation or substitution into formula or
	2×1	2×1			completing square (allow one sign error and
					some simplification – allow as far as
	eg	eg			-
	$(1)^{2} (1)^{2}$	$(7)^{2} (7)^{2}$			$\frac{-1\pm\sqrt{1+24}}{2}$ or $\frac{-7\pm\sqrt{49-24}}{2}$)
	$\left(x-\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = 6$	$\left(y - \frac{7}{2}\right)^2 - \left(\frac{7}{2}\right)^2 = -6$			
	$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$	$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$			or for seeing $x = 2, x = -3$ or $y = -1, y = -6$
	x = -3, x = 2 and	y = -1, y = -6			A1 (dep on M2) for $x = 2$, $x = -3$ and
					y = -1, y = -6 or
		1 7			1 5
	or one correct midpoint coordina	ite ie $x = -\frac{1}{2}$ or $y = -\frac{1}{2}$			one correct midpoint ie $x = -\frac{1}{2}$ or $y = -\frac{7}{2}$
		2 2			
	Working required		$\begin{pmatrix} 1 & 7 \end{pmatrix}$		A1 (dep on M2) oe
			$\left(-\frac{1}{2},-\frac{1}{2}\right)$		
					Total 6 marks

Q	Working	Answer	Mark	Notes

12	(a)(i)		b – a	1	B1 oe
	(ii)	E.g. $(KI = KJ + JI =)$		2	M1ft (i) for any valid correct path (oe) in
		2(b-a) + 2b oe			capitals or lower case letters
		Correct answer scores full marks (unless from	4 b – 2 a		A1 oe simplified
		obvious incorrect working)			
	(iii)	E.g. $(LD = LF + FE + ED =)$		2	M1ft (i) for any valid correct path (oe) in
		(b-a) + (b-a) - a oe			capitals or lower case letters
		Correct answer scores full marks (unless from	2 b – 3 a		A1 oe simplified
		obvious incorrect working)			
	(b)	$(GHIJKL =) 6 \times 5 \times 2^2 (= 120)$ or		3	M1
		$(GABH =) 5 \times 2^2 - 5 (= 15) \text{ or } 3 \times 5 (= 15) \text{ or}$			
		(Number of triangles in shaded region =)			
		$(6 \times 4) - 6 (= 18)$			
		"120" – (6×5) or			M1
		$6 \times "15"$ or			
		"18" × 5			
		Correct answer scores full marks (unless from	90		A1
		obvious incorrect working)			
					Total 8 marks

Q Working Answer Mark Notes

13 (a)	$(11-x) + (x) + (18-x) + 3 = 25 \text{ oe or} (11-x) + (x) + (18-x) + 3 + 7 = 25 + 7 \text{ oe or} x + y + z = 25 - 3 \text{ and } x + z = 11 \text{ and } x + y = 18 \text{ oe} where y = M \ll E \ll F \text{ and } z = M \ll F \ll E'$ Correct answer scores full marks (unless from	7	2	M1 for setting up a correct equation A1 (allow 7 in the Venn diagram if no answer is given in (a))
(b)	obvious incorrect working) $ \begin{array}{c} $		2	B2 ft for $18 - x$, x and $11 - x$ dep on M1 in part (a) and (x < 12) (NB 0, 1 and 4 are fixed) for 6 correct remaining values (B1 ft for 4 or 5 correct remaining values) Allow just <i>E</i> to be blank if other sections are populated with a number
(c)	$\frac{3 + "11"}{25} \text{ or } \frac{3 + (18 - "7")}{25} \text{ or } 0.56 \text{ oe}$	$\frac{14}{25}$	1	B1ft for $18 - x$, <i>x</i> and $11 - x$ oe
				Total 5 marks

Q	Working	Answer Mark		Notes
14	$\hat{E} = 6 \pm 5 + 2 \pm 3 \hat{E} + 5 \hat{C}_{000}$		7	M1 for finding the midpoint of AB

14	$\frac{E}{E} \frac{6+5}{2}, \frac{2+3}{2} \stackrel{\circ}{=} \frac{E}{E} \frac{1}{2}, \frac{5}{2} \stackrel{\circ}{=} \frac{6}{2}$		7	M1 for finding the midpoint of <i>AB</i>
	$\frac{2-3}{-6-5} \left(= \frac{-1}{-11} = \frac{1}{11} \right) 0e$			M1 for finding the gradient of <i>AB</i>
	$\frac{1}{11} = -1$ or $(m =)_{-11}$			M1ft their gradient of <i>AB</i> (indep) for the correct use of $m_1 \times m_2 = -1$
	$\left \frac{5}{2} = -11! \left(\frac{-1}{2} \right) + c \text{ oe or } y - \frac{5}{2} = -11! \left(x - \frac{1}{2} \right) \right $			M1 for an expression that gives the y value at C
	and			
	(y =) "-11"(-1) - 3(=8) ^{or}			
	$(y=)"-11"\left(-1-"-\frac{1}{2}"\right)+"\frac{5}{2}"(=8)$			
See alt methods	(Perp =) $\sqrt{\frac{\hat{E}}{2}} - \frac{5\hat{z}^{2}}{2} + \frac{\hat{E}}{2}$ 1- $-\frac{1\hat{z}^{2}}{2} + \frac{\hat{E}}{2}$ and			M1
	$(AB=)\sqrt{(3-2)^2+(56)^2} (=\sqrt{122})$			
	(Area of triangle =) $\frac{1}{2} \neq \sqrt{122} \neq \frac{\sqrt{122}}{2}$			M1 for a complete method
	Correct answer scores full marks (unless from obvious	30.5		A1 oe
	incorrect working)			Allow answers in the range $30.4 - 30.5$
				Total 7 marks

Q	Working	Answer	Mark	Notes
15	E.g. y = 0.4x and $10y = 4.x(10y - y = 4.x - 0.4 oe)or10y = 4.x$ and $100y = 4x.x(100y - 10y = 4x - 4 oe)or100y = 4x.x$ and $1000y = 4xx.x(1000y - 100y = 4xx - 4x oe)$		3	M1 for selecting 2 correct recurring decimal expressions and then a demonstration to subtract (If recurring dots not shown then allow each expression to 1 dp e.g. $y = 0.4x$ and $100y = 4x.x$ as a pair and $100y - y$ or $4x.x 0.4x$) or an answer of $y = \frac{4x - 4}{90}$ oe
	E.g. $9y = 4\frac{x}{10} - \frac{4}{10} = \frac{40 + x - 4}{10}$ oe or $90y = 40 + x - 4^{0e}$ or $900y = 400 + 10x + x - 40 - x^{0e}$ Working required	36+x		M1 for a correct subtraction with correct expressions simplified A1 dep on M2 oe
		90		Tatal 2 mayles
				Total 3 marks

Q Working	Answer Mark	x Notes
-----------	-------------	---------

16	E.g. $ \begin{array}{c} E.g. x + y + x + y + x = 1 \text{ OO }^{\text{ Oe or}} \\ 3x + 2y = 100 \text{ oe } \hat{E}_{y} = \frac{100 - 3x \hat{z}}{2} \\ E.g. \\ \frac{1}{2} \neq x \neq x \neq \sin 60 \\ \hat{E}_{x} \frac{1}{2} \neq x \neq x \neq \frac{\sqrt{3} \hat{z}}{2} \\ \hat{E}_{x} \frac{1}{2} \neq x \neq x \neq \frac{\sqrt{3} \hat{z}}{2} \\ \hat{E}_{x} \frac{x^{2}\sqrt{3} \hat{z}}{4} \\ \hat{E}_{x} x \neq \frac{x^{2}\sqrt{3} \hat{z}}{4} \\ $		3 M1 for a correct equation for the perimeter of the shape or for a correct expression for the area of triangle <i>CED</i>
	$x'' \frac{\hat{E}_{1}00-3x}{2} \frac{\hat{z}''+}{2} + \frac{x^2\sqrt{3}}{4} \text{"oe}$		M1 for the area of the shape in terms of x only
	E.g. $x \frac{\hat{E}^{200-} 6x \hat{z}}{4} + \frac{x^2 \sqrt{3}}{4}$ or $\frac{x}{4} (200- 6x+ x\sqrt{3})$ or $\frac{200x- 6x^2}{4} + \frac{x^2 \sqrt{3}}{4}$ or $\frac{x}{4} (200x- 6x^2+ x^2\sqrt{3})$	Shown	A1 for the area given in correct form with full working shown (at least one intermediate step before the answer)

17 (a)	(-2, 9)	1	B1
(b)	$(y =)$ 9- 3 $(x - 4 + 2)^2$	1	B1 oe eg $(y=)-3x^2+12x-3$
			accept $f(x-4)$
(c)	Reflection in the line $y = 0$ or x-axis	1	B1 with no mention of another transformation

Q Working	Answer Mark	Notes
-----------	-------------	-------

				Edexcel a	averages: s	scores of o	candidates	who achi	eved grad	e:		
	Mean	Max	Mean									
Qn	score	score	%	ALL	9	8	7	6	5	4	3	U
1	2.73	3	91	2.73	2.98	2.95	2.91	2.83	2.67	2.32	1.61	0.66
2	1.68	2	84	1.68	1.95	1.88	1.84	1.62	1.53	1.22	0.87	0.22
3	3.02	4	76	3.02	3.96	3.69	3.45	2.87	2.22	1.34	0.65	0.15
4	4.96	7	71	4.96	6.58	5.95	5.21	4.56	3.84	2.62	1.38	0.82
5	3.12	5	62	3.12	4.64	4.03	3.46	2.67	1.74	0.84	0.18	0.00
6	3.27	5	65	3.27	4.47	3.88	3.37	2.89	2.52	1.76	0.88	0.34
7	1.73	3	58	1.73	2.74	2.23	1.92	1.32	0.80	0.42	0.13	0.00
8	2.34	5	47	2.34	4.51	3.18	2.21	1.11	0.39	0.21	0.09	0.00
9	3.57	8	45	3.57	6.89	4.51	3.12	2.02	0.94	0.48	0.16	0.06
10	1.16	3	39	1.16	2.42	1.46	0.91	0.49	0.23	0.09	0.02	0.00
11	1.98	6	33	1.98	4.61	2.18	1.42	0.52	0.22	0.11	0.07	0.00
12	2.53	8	32	2.53	5.40	2.78	1.82	1.23	0.65	0.34	0.25	0.00
13	1.57	5	31	1.57	3.74	1.84	0.86	0.42	0.14	0.07	0.09	0.02
14	1.74	7	25	1.74	4.21	1.73	1.03	0.55	0.29	0.13	0.03	0.00
15	0.38	3	13	0.38	0.92	0.43	0.24	0.13	0.03	0.01	0.00	0.00
16	0.50	3	17	0.50	1.41	0.45	0.17	0.06	0.01	0.00	0.00	0.00
17	0.58	3	58	0.58	1.68	0.48	0.16	0.03	0.00	0.03	0.00	0.00
	36.86	80	46	36.86	63.11	43.65	34.10	25.32	18.22	11.99	6.41	2.27

Suggested grade boundaries

Grade	9	8	7	6	5	4	3
Mark	53	39	30	22	15	10	4

15